

 DEVELOPERS GUIDE

 HKEx Orion Market Data Platform
Securities Market & Index Datafeed Products

Version 1.0
31 July 2012

HKEx Orion Market Data Platform Document History

© Copyright 2012 HKEx 2 / 30

DOCUMENT HISTORY

Distribution Version

Version

Date of Issue

Comments

V1.0 31 July 2012 First Distribution Issue

HKEx Orion Market Data Platform Contents

© Copyright 2012 HKEx 3 / 30

CONTENTS

1 INTRODUCTION ... 4
2 DATA STRUCTURE .. 5
2.1 Packet Header ... 5
2.2 Heartbeats ... 6
2.3 Message Header .. 6
2.4 Message Formats .. 6
3 ENDIAN .. 6
4 FIELD ATTRIBUTES ... 7
4.1 Null Values ... 7
4.2 Currency Values... 7
5 MESSAGE PROCESSING ... 7
5.1 Start of Day .. 7
5.2 Normal Transaction ... 8
5.2.1 Receive Multicast .. 8
5.2.2 Line Arbitration ... 8
5.2.3 Process Data Message ... 10
5.2.4 Process Control Message (Heartbeats) ... 10
5.3 Recovery .. 11
5.3.1 Retransmission Service.. 11
5.3.1.1 Secondary Retransmission Server ... 12
5.3.1.2 RTS Logon .. 12
5.3.1.3 RTS Logon Response .. 12
5.3.1.4 RTS Heartbeats .. 12
5.3.1.5 RTS Request ... 13
5.3.1.6 RTS Response .. 13
5.3.1.7 RTS Message .. 14
5.3.1.8 RTS Limits .. 14
5.3.1.9 Processing of RTS retransmission data .. 14
5.3.2 Refresh Service .. 15
5.3.2.1 RFS Snapshot ... 16
5.3.2.2 Processing a Refresh ... 16
6 RACE CONDITIONS... 19
7 AGGREGATE ORDER BOOK MANAGEMENT .. 19
8 FULL ORDER BOOK MANAGEMENT ... 19
9 EXCEPTION HANDLING .. 20
9.1 Late Connection / Startup Refresh .. 20
9.2 Intra-day Refresh ... 21
9.3 Client Application Restarts .. 21
9.4 Sequence Reset Message .. 21
9.5 OMD Restarts Before Market Open .. 22
9.6 OMD Component Failover... 22
9.7 Site Failover ... 22
APPENDIX A – Example of network diagram to OMD ... 23
APPENDIX B – Pseudo code to connect and receive multicast channel ... 25
APPENDIX C – Pseudo code of Line Arbitration .. 26
APPENDIX D – Pseudo code for processing retransmission data .. 28
APPENDIX E – Pseudo code for processing Refresh snapshot packet ... 29
APPENDIX F – Pseudo code for processing Aggregate Order Book Message ... 30

HKEx Orion Market Data Platform Developers Guide

© Copyright 2012 HKEx 4 / 30

1 INTRODUCTION

This document contains guidelines and suggestions for HKEx Orion Market Data Platform (ʺOMDʺ) feed
handler developers. All information included in this document is presented for reference only. Clients
should design and implement their own OMD feed handler that are tailored to their business and
technical requirements.

Its scope covers line arbitrage, packet and message processing, retransmission and refresh mechanisms,
order book maintenance and exceptional handling procedures.

The purpose of this document is to answer any questions that developers may have after reading the
OMD interface specification. It shows examples of usage and code snippets to help developers to
understand the logic behind the market data disseminated from the OMD platform.

Table 1. Acronyms used in this document

FH Feed handler

HA High Availability

MC Multicast

RFS Refresh Server

RTS Retransmission Server

UDP User Datagram Protocol

XDP Exchange Data Publisher

Diagram 1. A Basic Client Application Layout

HKEx Orion Market Data Platform Developers Guide

© Copyright 2012 HKEx 5 / 30

2 DATA STRUCTURE

Multicast packets are structured into a common packet header followed by zero or more messages.
Messages within a packet are laid out sequentially, one after another without any spaces between
them.

A packet will only ever contain complete messages. A single message will never be fragmented across
packets.

2.1 Packet Header

All packets disseminated from the OMD feed have a common packet header. This format is consistent
across live, retransmission and refresh. XDP packet consists of 16-byte header followed by messages.

There are no delimiters between the packet header and messages or between messages themselves.
One has to use the size of the header and in each individual message to determine the start of each
message.

Table 2 below shows the packet header structure. The offsets in the table represent the number of
bytes away from the beginning of the packet.

Table 2. Packet Header

Field Offset Length Format Description

PktSize 0 2 Uint16 Binary integer representing size of
the packet (including this header)

MsgCount 2 1 UInt8 Binary integer representing number
of messages included in the packet

Filler 3 1 String

SeqNum 4 4 Uint32 Binary integer representing the
sequence number of the first
message in the packet

SendTime 8 8 UInt64 Binary integer representing the
number of nanoseconds since
January 1, 1970, 00:00:00 GMT,
precision is provided to the nearest
millisecond

XDP Header M1 M2 Mn
...

16 bytes

PktSize
Msg

Count
Filler SeqNum SendTime

2 bytes 1 byte 1 byte 4 bytes 8 bytes

HKEx Orion Market Data Platform Developers Guide

© Copyright 2012 HKEx 6 / 30

2.2 Heartbeats

Heartbeats consist of a packet header with MsgCount set to 0 and do not increment the sequence
number of the multicast channel. SeqNum in packet header is set to the sequence number of the
previous message sent on the channel.

The Heartbeat message syntax is identical across OMD services.

2.3 Message Header

The format of each message within a packet will vary according to message type. However, regardless
of the message type, all messages start with a two-byte message size followed by a two-byte message
type.

MsgSize Binary integer representing the length of the message (including the header)
MsgType Binary integer representing the type of message. Please refer to the HKEx OMD Interface

Specification for the full list of message type

2.4 Message Formats

Please refer to the HKEx OMD Interface Specification for details on the following message types:

- Control messages
- Retransmission
- Refresh
- Reference Data
- Status Data
- Order Book Data
- Trade and Price Data
- Value Added Data
- News
- Index Data

3 ENDIAN

All binary values are in Little Endian byte order, which means the first byte (lowest address) is the least
significant one.

In C/C++, one solution is to create a structure containing all the fields from the packet header and cast
the pointer to a packet, to a pointer to such a structure. For instance:

struct XdpPacketHeader

{

unsigned short mPktSize;

unsigned char mMsgCount;

unsigned char mFiller;

unsigned long mSeqNum;

unsigned long long mSendTime;

MsgSize MsgType

2 bytes 2 bytes

HKEx Orion Market Data Platform Developers Guide

© Copyright 2012 HKEx 7 / 30

};

Assume the packet is passed as a pointer to const unsigned char, which could look like this:

struct PacketHeader* hdr = static_cast<PacketHeader*> (packetPtr);

One packet can contain multiple messages. Clients should locate the beginning of each message based
on the message length and process each message separately. The number of messages within a packet
is indicated by MsgCount field in the packet header.

4 FIELD ATTRIBUTES

4.1 Null Values

From time to time certain fields cannot be populated and specific values are used to represent null. For
example, it is currently used within Int64 fields of the Index Data (71) message.

The Int64 null representation is 0x8000000000000000 (Hex 2’s complement) or
-9223372036854775808 (Decimal).

4.2 Currency Values

See the ISO-4217 Currency Codes for a full list of possible data values. Currently, the system uses the
following codes:

‘HKD’ – Hong Kong dollars
‘USD’ – US dollars
‘CNY’ – Chinese Renminbi
‘EUR’ – Euro
‘JPY’ – Japanese Yen
‘GBP’ – United Kingdom Sterling
‘CAD’ – Canadian Dollars
‘SGD’ – Singapore Dollars

HKEx may add or delete currency code(s), whenever applicable, in the future.

5 MESSAGE PROCESSING

Each multicast channel maintains its own session. A session is limited to one business day. During the
day, message sequence number is strictly increasing and therefore unique within a channel.

5.1 Start of Day

OMD will normally be brought up around 1:30am. This start up time, however, is not rigid and HKEx has
the right to adjust this time according to the different trading situations.

Clients start at OMD startup time
 Clients subscribe to real-time multicast channels (Each OMD data product is delivered via a group of

real-time multicast channels)

 OMD sends Sequence Reset message (100). Please refer to section 9.4 Sequence Reset Message for
processing details.

 OMD sends Reference Data messages below

HKEx Orion Market Data Platform Developers Guide

© Copyright 2012 HKEx 8 / 30

 Market Definition (10)
 Security Definition (11)
 Liquidity Provider (13)
 Currency Rate (14)

 Remark:
 Clients may receive multiple Sequence Reset messages during the start of day. The general

handling should be, reset the next expected sequence number and clear all cached data for all
instruments. Please refer to section 9.5 OMD Restarts Before Market Open for details.

 After receiving the Sequence Reset message, clients should also check the sequence number of
next incoming packet. If the sequence number is not equal to 1, it indicates that there is
packet loss. Please refer to section 9.4 Sequence Reset Message for details.

Clients start after OMD startup time and missed sequence reset message and reference data
 Please refer to section 5.3.2.2 Processing a Refresh for exception handling of late connection

5.2 Normal Transaction

Normal message transmission is expected between when the market opens for trading and when the
market is closed. Heartbeats are sent regularly (currently OMD sets to every 2 seconds) on each
channel when there is no line activity.

UDP multicast network/transport protocol is used in OMD and data is sent to different broadcast
streams (known as multicast channels).

UDP is not a reliable transport protocol. So packets may be lost or come out of order. The data on each
channel comes from two redundant lines, A and B, to minimize the risk of losing a packet.

Clients receive and process OMD data
- Receive real-time multicast messages from Line A and Line B

 Create two sockets using Multicast IP / Ports of Line A and Line B
 Read data from multicast channel for Line A and Line B

- Line Arbitration using sequence number in packet header

 Discard duplicate packets
 Reorder packets
 Gap Detection

- Process multicast messages

 Process Data Message
 Process Control Message (Heartbeat)

5.2.1 Receive Multicast

Clients join particular multicast group in order to receive the desired data. Data is categorized and
available from dedicated multicast groups.

Clients connect and receive real-time multicast messages from Line A and Line B.

Please refer to APPENDIX B – Pseudo code to connect and receive multicast channel for example on

connecting multicast channels.

5.2.2 Line Arbitration

The network/transport protocol used in OMD is UDP multicast. The data in OMD is divided into
broadcast streams (known as channels). The data on each channel comes from two redundant lines,

HKEx Orion Market Data Platform Developers Guide

© Copyright 2012 HKEx 9 / 30

A and B. UDP is not a reliable transport protocol like TCP but because of this it is much faster,
although this means it is possible that packets may be lost or come out of order. Two lines with
identical data minimize the risk of losing a packet; however the risk still exists.

Note

1. Clients should not prioritize line A over line B. They should listen to both line A

and B at the same time. Line A is not guaranteed to be faster than B. They
should both be treated with the same priority. The approach that assumes
listening to line B only if there is a gap detected on line A is incorrect. In
general, it is recommended to have an abstraction layer between the gap
detection module and the source of packets. In other words, the gap
detection module does not have to know where the packets are coming from,
it just needs to monitor packet sequence numbers.

2. The packaging of messages between Line A and Line B may be different. In the
example below, three packets are sent on each line, but message
‘OrderUpdate3’ appears in one packet from Line A but in the subsequent
packet on Line B.

Diagram 2. Normal Message Delivery of Primary and Secondary Line (Line A and B)

Note
- MC: Message Count in a Packet

Clients receiving OMD feed are recommended to implement the following functionality in order to
provide appropriate line handling:

1. Discarding duplicate messages
2. Reordering messages
3. Gap Detection

All of the above can be achieved by remembering the next expected sequence number. Please refer
to the Gap Detection Diagram in the OMD Interface Specification for reference. Basically, a gap
detection mechanism may work like this:

When clients receive a packet from Line A or Line B,
- Handle the first packet, process each message within the packet and advance the next expected

sequence number (nextSeqNum) by 1

- When subsequence packet is received, compare the current seqNum in the packet header with

the nextSeqNum
- If seqNum > nextSeqNum, it is a gap and spool the message
- If (seqNum + msgCount in packet) < nextSeqNum, it is a duplicate packet and skip

- When processing each message within the packet

Messages MC SN SN MC Messages

OrderUpdate1

OrderUpdate2

OrderUpdate3

3 101 101 2 OrderUpdate1

OrderUpdate2

Trade1

OrderUpdate4

2 104 103 3 OrderUpdate3

Trade1

OrderUpdate4

Trade2

Statistics1

2 106 106 2 Trade2

Statistics1

Primary Secondary

HKEx Orion Market Data Platform Developers Guide

© Copyright 2012 HKEx 10 / 30

- If (seqNum + message processed count in this packet) < nextSeqNum,
 It is a duplicate message and skip

- If (seqNum + message processed count in this packet) = nextSeqNum,
 Process it and advance the next expected sequence number (nextSeqNum) by 1

Please refer to APPENDIX C – Pseudo code of Line Arbitration for example on detecting gap or

duplicate packet.

Possible approaches for handling message gap

Approach 1: Clients wait some time to fill the gap from the redundant line (or the packet may

come from the same line, possibly out of order)

If a given amount of time has passed and there still is a gap, the clients should send a retransmission
request. While awaiting for retransmission all packets coming from the live feed should be spooled.
After processed the retransmitted packets, clients should process the spooled packets/messages.

Note

1. While waiting for the retransmission, another gap can occur. Clients should

take this into account. One possible solution would be to keep track of how
many gaps have been detected and for which gaps a retransmission request
has already been sent.

2. Only a continuous series of packets/messages from the spool should be
processed.

3. Any gaps should await to be filled either from the redundant line or the
retransmission server.

4. Check if the gap in spool message can be filled at regular interval.
5. If the gap cannot be recovered for specified time, clients should recover from

refresh server.

Please refer to APPENDIX C – Pseudo code of Line Arbitration for example on processing spooled

messages.

Approach 2: Issue a retransmission request immediately after detecting a gap

If the missed packets/messages come on the redundant line before they come from the
retransmission, clients will simply process them and discard the retransmitted ones.

This approach may waste a number of retransmission requests, but is faster.

5.2.3 Process Data Message

Message carrying information about a particular instrument has a Security Code field. This field is
unique instrument identifiers. The Security name, ISIN code, etc. are only carried in the Security
Definition (11) message, so clients must associate the Security Code with instrument's characteristics
during the reference data processing. The Security Code, once allocated for an instrument, does not
change.

5.2.4 Process Control Message (Heartbeats)

Heartbeats are disseminated at regular time intervals. Clients can use heartbeats to check if the feed
is alive. If there is no heartbeat for longer than a configurable time, then it indicates that there is an
outage at the exchange side.

Note that OMD sends heartbeats only when there is no market data being disseminated. When there
is market data on the line, no heartbeat is available.

HKEx Orion Market Data Platform Developers Guide

© Copyright 2012 HKEx 11 / 30

Heartbeats consist of a packet header with MsgCount set to 0 and do not increment the sequence
number of the multicast channel. SeqNum in packet header is set to the sequence number of the
previous message sent in the channel.

When receiving heartbeat packet, clients should ignore this packet in gap detection. Otherwise,
clients may fail to detect the actual message gap.

Table 3. Gap Detection Example

Time
Packet sent from

OMD
Packet received by

Client

Remark

T1 101 101

T2 102 102

T3 103

Packet with seqNum 103 is lost

T4 103 (Heartbeat) 103 (Heartbeat)

If client receives heartbeat message but cannot
find the corresponding packet with same
sequence number, it should be a message gap
and client should recover the lost message

T5 104 104

T6 105 105

T7 106 106

5.3 Recovery

Since UDP multicast is not a reliable protocol, there is a risk of packet lost. Clients can recover lost
messages using the retransmission server or the refresh, which depend on varies factors such as
message gap size, recovery time/event and etc.

5.3.1 Retransmission Service

For small number of message gap, clients can recover lost messages using the retransmission server.
The connection between the RTS and the client is reliable (TCP/IP). In order to receive lost messages,
clients need to send a Retransmission Request. The RTS will respond with a Retransmission Response
which can indicate that either the request has been accepted or rejected (the RetransStatus field). If
accepted, the RetransStatus field will be 0, and if rejected, the values can be 1, 2, 100 or 101.

The retransmission server contains only a relatively small number of messages (50,000) from each
broadcast stream. The RTS should not be thought of as a means of recovering intraday. It serves only
as real time retransmission of a relatively small number of lost messages.

Clients can have only one connection with the RTS.

The sequence number range as well as the number of requests per day is limited to 1000 requests,
and 10,000 messages per request.

Note

If clients need to issue a retransmission request for a gap bigger than the allowed
limit, they need to split the requests into appropriate amount of smaller requests.

RTS Logon, Logon Response, RTS Request and RTS Response message will begin
with packet header which is same format as real time. Clients should ignore the

HKEx Orion Market Data Platform Developers Guide

© Copyright 2012 HKEx 12 / 30

sequence number in RTS packet header when sending or processing the RTS
message.

5.3.1.1 Secondary Retransmission Server

There is a secondary RTS which should be used in case there are any problems encountered with the
primary RTS. This is a part of the High Availability design and is meant to provide customers with a
seamless service in case of the primary RTS failure.

5.3.1.2 RTS Logon

In order to receive retransmission, clients must establish a TCP/IP connection with the RTS and initiate
a session by sending a Logon message within the logon timeout interval (5 seconds). If clients do not
send a Logon message within the logon timeout interval, the server will close the connection.

Table 4. Logon Packet Header

PktSize 32

MsgCount 1

Filler

SeqNum Optional

SendTime The number of nanoseconds since January 1,
1970, 00:00:00 GMT, precision is provided to the
nearest millisecond.

Table 5. Logon Request Message

MsgSize 16

MsgType 101

Username Username to logon in plain text

5.3.1.3 RTS Logon Response

The RTS immediately sends a LogonResponse message after it receives a Logon request. The
SessionStatus field indicates if the Logon was successful. The possible values of this field are:

Table 6. Logon Session Statuses

Logon Session Status Meaning

0 Session Active

5 Invalid Username

100 User already connected

The session, once established, can be reused for sending any subsequent retransmission requests. To
maintain the session, a client must respond to heartbeats sent by the RTS within 5 seconds.

5.3.1.4 RTS Heartbeats

To determine the healthiness of the client connection on the TCP/IP channel, the RTS will regularly
send heartbeats to the client. The heartbeat frequency is 30 seconds. The client must respond with a
Heartbeat Response. The timeout of this heartbeat response is set at 5 seconds. If no response is
received by the RTS within this timeframe, RTS will disconnect the session.

HKEx Orion Market Data Platform Developers Guide

© Copyright 2012 HKEx 13 / 30

A Heartbeat Response is an exact copy of the incoming Heartbeat.

5.3.1.5 RTS Request

A retransmission request consists of a PacketHeader and a Retransmission Request (201).

Table 7. Retransmission Request Packet Header

PktSize 32

MsgCount 1

Filler

SeqNum Optional

SendTime The number of nanoseconds since January 1,
1970, 00:00:00 GMT, precision is provided to the
nearest millisecond.

Table 8. Retransmission Request Message

MsgSize 16

MsgType 201

ChannelID Depending on the broadcast stream

Filler

BeginSeqNum Message sequence number of first message in
range to be resent

EndSeqNum Message sequence number of last message in
range to be resent

 Example of Retransmission Request

Assume client application received following packets from real time multicast channel 1

Channel Packet Sequence
number

Message Message received Message Gap (Y/N)

1 101 Msg1
Msg2
Msg3

Msg 1 (101)
Msg 2 (102)
Msg 3 (103)

N

1 104 Msg4
Msg5
Msg6

Msg 4 (104)
Msg 5 (105)
Msg 6 (106)

N

1 109 Msg7
Msg8

Msg 7 (109)
Msg 8 (110)

Y (Missing messages with
sequence number 107-108)

Client application should send following Retransmission Request Message to recover missing
messages (Seq # 107-108)

MsgSize 16

MsgType 201

ChannelID 1

Filler

BeginSeqNum 107

EndSeqNum 108

5.3.1.6 RTS Response

HKEx Orion Market Data Platform Developers Guide

© Copyright 2012 HKEx 14 / 30

After sending a retransmission request, the RTS will respond with a retransmission response message.
The most important field in the response message is the RetransStatus. Below are the possible values
and what they indicate:

Table 9. Retransmission Response statuses

Retransmission Response
Status

Meaning

0 Request accepted

1 Unknown/Unauthorised Channel ID

2 Messages not available

100 Exceeds maximum sequence range

101 Exceeds maximum requests in a day

Note

It is very important to stop sending retransmission requests for the current day
after being rejected with reason 101. Client may contact HKEx OMD help desk for
assistance.

5.3.1.7 RTS Message

Upon receiving retransmission response with Status '0', the RTS will start sending packets containing
the requested messages. The sequence number of first requested message will be used as sequence
number in packet header.

5.3.1.8 RTS Limits

Below is a table detailing the limits imposed on the Retransmission Service:

Table 10. Retransmission System Limits

System Limit Value

Last number of messages available per channel ID 50,000

Maximum sequence range that can be requested 10,000

Maximum number of requests per day 1,000

Logon timeout (seconds) 5

Heartbeat interval (seconds) 30

Note

If clients exceeded the daily limit of requesting OMD Retransmission services, you
may contact OMD Help Desk for assistant.

5.3.1.9 Processing of RTS retransmission data

Figure 1. Workflow of Retransmission

HKEx Orion Market Data Platform Developers Guide

© Copyright 2012 HKEx 15 / 30

Gap too big ?

Begin

Retrans due to

gap detected

Gap is not

recoverable by

RTS

Push to request

queue

Connected to

RTS ?
Connect to RTS

Pop request at head

of request queue

Request

Accepted ?

Process received

message
End

Yes

No

No

Yes

No

Yes

 (Reject code = 0)

Exceed max

seq range ?

Yes(Reject code = 100)

Split to multiple

requests

No

(Reject code = 2)

(Assuming a client is authorised to that channel ID and has not reached the maximum request limit.)

Please refer to APPENDIX D – Pseudo code for processing retransmission data for example on

handling data from OMD Retransmission server.

5.3.2 Refresh Service

The OMD feed provides a refresh facility, which allows clients to start intraday or recover from
significant packet loss. The refresh is available per channel.

RFS periodically provides a full snapshot of the market. Not all the messages available from the live
feed can be recovered from the refresh. However, all the message types, necessary for reconstructing
an up-to-date image of the market, are available from the refresh.

The refresh packets are disseminated via dedicated multicast streams.

HKEx Orion Market Data Platform Developers Guide

© Copyright 2012 HKEx 16 / 30

Similar to real time channel, the refresh data also come from two redundant lines, A and B. Clients can
apply the Line Arbitration mechanism described in 5.2.2 Line Arbitration, except that there is no
retransmission.

If clients connect to refresh multicast channel after OMD start up, they do not need to check any
message gap before the first arrived packet. Clients can make reference to the sequence number of
the first message and increment the next expected sequence number by 1 when processing incoming
messages.

It is advisable that clients utilise the refresh service under the following situations:

1. Intraday start
2. Large message gap
3. Delay in the RTS retransmission
4. RTS retransmission failure

5.3.2.1 RFS Snapshot

Please refer to the OMD Interface Specification for the coverage of snapshot data.

5.3.2.2 Processing a Refresh

Processing the refresh while coping with the live feed may be a challenging piece of functionality in
the feed handler. There are several things to think about in order to process the refresh properly.
The 4 main areas, which problems may perhaps arise, are:

1. Connectivity
2. Synchronisation
3. Determine a full refresh snapshot
4. Sequencing of events

Connectivity

There are 2 data streams that need to be handled during the refresh:

1. Live feed multicast
2. Refresh feed multicast

Synchronization

1. Subscribe to the real time MC channel and cache received messages.
2. Subscribe to the corresponding refresh multicast channel. Once subscribed, if messages are

received instantaneously, clients should discard all messages till the arrival of a Refresh Complete
message.

3. Wait for the next wave of snapshot data. Process all messages until the next Refresh Complete
message is received.

4. Store the LastSeqNum sequence number provided in the above message.
5. If Sequence Reset message is received, reset the next expected sequence number to a value of

NewSeqNo (1) field in current Sequence Reset message
6. Unsubscribe from the refresh MC channel.
7. Discard the cached real time messages with sequence number less than or equal to LastSeqNum.
8. Process the remaining cached real-time messages and resume normal processing.

Determine a full refresh snapshot

When subscribing to OMD refresh multicast channel, clients should handle the following situations to
recover a full image of the market:

HKEx Orion Market Data Platform Developers Guide

© Copyright 2012 HKEx 17 / 30

1. The first message received is a Heartbeat

When there is no message transmission (channel idle) in a refresh multicast channel, OMD sends
Heartbeat message at a regular time interval (currently it is set to 2 seconds). Clients wait for the
full refresh snapshot starting with a message other than Heartbeat till the arrival of Refresh
Complete message.

2. The first message received is a Refresh Complete message

Clients ignore the first Refresh Complete message and the subsequent Heartbeat message(s) in a
refresh multicast channel. The next refresh snapshot starts with a message other than Heartbeat
till the arrival of the second Refresh Complete message.

3. The first message received is neither Heartbeat nor Refresh Complete message

Clients cannot receive a full refresh snapshot and should NOT process any message at the
moment. Simply skip message(s) until a Refresh Complete message is received. Usually, OMD
sends refresh snapshot at a regular interval. Heartbeat is disseminated in between two rounds of
refresh snapshot. Similar to point 1, clients will then obtain a full market snapshot in the next
refresh interval

4. Receive refresh messages follow by Sequence Reset message

Receive “Sequence Reset Message” from refresh channel and clear the cached refresh messages
from that refresh channel before. The next refresh snapshot starts with a message other than
Heartbeat with sequence number start from 1 till the arrival of the Refresh Complete message.

Sequencing of events

It is important for clients to know which multicast channels hosts reference data for what other
channels. Clients should not process any data (except for the reference data) until the full reference
data is processed.

This implies the order of requesting refresh that clients should obey.

If the feed handler is started intraday, clients should first go for the refresh of channels that serve
reference data. Only after the refresh of the reference data is received, clients should ask for the
refresh of trades, order books, etc.

Note

There is no TCP retransmission for refresh. Clients must monitor for packet loss on
the refresh channels and wait for the next snapshot if loss is detected.

HKEx Orion Market Data Platform Developers Guide

© Copyright 2012 HKEx 18 / 30

Figure 2. Workflow of Refresh

RFS had already started

sending snapshot messages at

current publishing interval

Begin

Discard all snapshot

messages

Yes

Message gap

detected ?

No

Yes

Read the refresh

messages

No

End

Refresh Complete

message ?

Yes

Apply the cached live messages

with seq number > LastSeqNum

No

Unsubscribe from

Multicast channel

Subscribe coresponding

refresh channel(s)

Wait for Refresh

complete message

Ready for reading new

batch of snapshot

messages

Process the

refresh messages

Store last seq number

(LastSeqNum)

Cache messages of

realtime multicast

channel(s)

Please refer to APPENDIX E – Pseudo code for processing Refresh snapshot packet for example on

handling data from OMD RFS.

HKEx Orion Market Data Platform Developers Guide

© Copyright 2012 HKEx 19 / 30

6 RACE CONDITIONS

The real-time order/trade data and reference data are disseminated via separate channels, so users
need to be aware that there is a race condition.

For example, a Security Status (21) message may be sent marking a security as suspended. However,
for a very short time after this message, the regular order and trade information for this security may
continue to arrive.

Another example would be a Trading Session Status (20) message marking the trading session as halted,
but real time data for the same market may continue to arrive for a short time afterwards.

7 AGGREGATE ORDER BOOK MANAGEMENT

Book updates are sent by OMD via Aggregate Order Book (53) messages. Each message may contain
any combination of new, changed or deleted entries for a book or clear the whole book. The nature of
an entry is defined by its UpdateAction.

Table 11. Actions on Aggregate Order Book Messages

Action Description

New Create/Insert a new price level

Delete Remove a price level

Change Update aggregate quantity at a price level

Clear Clear the whole book

General Rules

• All entries within an Aggregate Order Book message must be applied sequentially.
• Clients must adjust the price level of entries below deleted or inserted entries. Note - Potential level

adjustments must be carried out after each single entry in Aggregate Order Book message.
• If a new book entry causes the bottom entry of a book to be shifted out of the book,

1. If the shifted out entry is within 10 Price level, OMD will send an explicit deletion entry (Explicit
delete).

2. If the shifted out entry is outside the 10 Price level, clients must delete the excess entry (Implicit
delete).

3. If the book shrinks again, the server resends the entries that have temporarily fallen out.
• If a match causes an order to be removed so that there are now less than 10 levels visible, then the

server will also automatically send the additional level(s) that are now revealed.
• If a clear aggregate order book message is received, client should clear all entries of the order book.

Please refer to Section 5 – Aggregate Order Book Management in the Interface Specification of HKEx
Orion Market Data Platform Securities - Market & Index Datafeed Products for different scenarios on
how OMD sends Aggregate Order Book message.

You may also refer to APPENDIX F – Pseudo code for processing Aggregate Order Book Message for

example on handling Order Book messages from OMD server.

8 FULL ORDER BOOK MANAGEMENT

Developers maintain order books from Order Update Messages. Every event in the full order book is
reported by OMD with the following message types being disseminated:

HKEx Orion Market Data Platform Developers Guide

© Copyright 2012 HKEx 20 / 30

Table 12. Order Update Message Types

Message Type Name

30 Add Order

31 Modify Order

32 Delete Order

33 Add Odd Lot Order

34 Delete Odd Lot Order

General Rules

• Clients should be able to uniquely identify the order (OrderID is the unique identifier per security)
• Determine the price and size of an order

Order Types

Table 13. Order Types

Order Type Description

Market (1) Executed at current market price

Limit (2) Contains an execution condition to buy or sell at
a specified price or better

Note

The price field of Market Orders is always set to 0.

9 EXCEPTION HANDLING

Listed below are some common exception handling procedures that clients must be capable of when
subscribing to OMD:

- Late connection
- Intra-day refresh
- Client application restarts
- Sequence Reset Message
- OMD restarts before market open
- OMD node failover
- Site failover

9.1 Late Connection / Startup Refresh

When client starts late, all reference data should be recovered before the current image for all
instruments across all channels.

Please refer to section 5.3.2.2 Processing a Refresh for recovery procedures.

Note

- Some channels may host reference data for other channels.
- Channels which depend on other channels for reference data cannot be

processed before full reference data has been received
- Clients must define relationships between channels

HKEx Orion Market Data Platform Developers Guide

© Copyright 2012 HKEx 21 / 30

9.2 Intra-day Refresh

For each real time multicast channel, there exists a corresponding refresh multicast channel on which
snapshots of the market state are sent at regular intervals throughout the business day.

When clients experienced an unrecoverable packet loss on a certain channel during the day, a snapshot
is only needed for that channel.

Sequencing of events

1. Caches real time messages in the multicast channel that previously experienced packet loss
2. Listens to the corresponding refresh multicast channel and waits for the next snapshot (refer to

5.3.2.2 Processing a Refresh - Determine a full refresh snapshot)
3. Processes all refresh messages until the arrival of a Refresh Complete message
4. Store the LastSeqNum sequence number provided in the Refresh Complete message
5. Disconnects from the refresh multicast channel
6. Processes the cached real time messages with sequence number greater than the LastSeqNum.

Otherwise, drop processing it.

Now the clients maintain the current market image.

9.3 Client Application Restarts

Similar to “Late Connection” as described earlier.

9.4 Sequence Reset Message

Sequence Reset Message from real time channels

Sequencing of events
1. Receive “Sequence Reset Message” from any real time multicast channel
2. Reset the next expected sequence number to a value of NewSeqNo (1) field in Sequence Reset

message
3. Clear all cached data for all instruments.
4. Subscribe to the corresponding refresh channels of all subscribed real time multicast channels to

receive the current state of the market. (refer to 5.3.2.2 Processing a Refresh – for handling
messages from Refresh channels)

5. Resume to process real time messages

Packet loss detection when processing Sequence Reset Message
After a Sequence Reset, the first UDP packet should have a sequence number 1. However, this packet is
lost and clients start receiving packet with sequence number 2 and onwards. Clients can try to recover
it from the redundant line. If the lost packet is unrecoverable, clients should start buffering the live
feed and send a retransmission request immediately.

Once clients finished processing the retransmitted messages from RTS, clients can maintain the latest
market image by handling the buffered data and then the live feed.

Sequence Reset Message from Refresh channels
Refer to 5.3.2.2 Processing a Refresh – for handling sequence reset message from Refresh channels)

HKEx Orion Market Data Platform Developers Guide

© Copyright 2012 HKEx 22 / 30

9.5 OMD Restarts Before Market Open

In case of OMD performs start-of-day twice (errors encountered during first start-of-day). The second
start-of-day should trigger Sequence Reset in all channels. Clients should discard all reference data
received in the first start-of-day and process the second start-of-day.

9.6 OMD Component Failover

In case no live data can be received in one of the OMD lines (say line A), there is no impact to clients as
OMD would continue publishing data via the alternate line (line B). Clients can reapply line arbitration
to retrieve the latest market information as usual when OMD resumed the service from line A.

Trade Ticker may be resent for OMD Securities Standard service, Client should check the ticker ID when
processing the Trade Ticker message to avoid duplication

9.7 Site Failover

In case of any problem in primary OMD servers, the OMD servers will be brought up at the backup site.
The multicast addresses of live and refresh data will remain the same. The primary RTS servers will not
be available. Clients should use the backup IP addresses to connect to backup RTS servers.

Once the OMD DR site is ready, OMD sends sequence reset message per multicast channel. Clients
subscribe to the refresh channels in order to receive the current state of the market. Please refer to
section 9.4 Sequence Reset Message for details.

HKEx Orion Market Data Platform Appendix

© Copyright 2012 HKEx 23 / 30

APPENDIX A – Example of network diagram to OMD

Multicast

Handler

Multicast

Handler

Line

Arbitration

Real-Time

Line B

Multicast

Handler

Multicast

Handler

Line

Arbitration

Refresh

Line BLine A

Message Handler

Static Data Static Data Refresh

Retransmis

sion

Message Handler

Status Data Status Data Refresh

Multicast

Handler

Multicast

Handler

Line

Arbitration

Real-Time

Line BLine A

Multicast

Handler

Multicast

Handler

Line

Arbitration

Refresh

Line BLine A

Message Handler

Multicast

Handler

Multicast

Handler

Line

Arbitration

Real-Time

Line BLine A

Multicast

Handler

Multicast

Handler

Line

Arbitration

Refresh

Line BLine A

Streaming Data Streaming Data Refresh

Message Handler

Multicast

Handler

Multicast

Handler

Line

Arbitration

Real-Time

Line BLine A

Multicast

Handler

Multicast

Handler

Line

Arbitration

Refresh

Line BLine A

Broker Queue Broker Queue Refresh

OMD Multicast Channels

OMD Retranmission

Server

Line A

TCP Multicast

HKEx Orion Market Data Platform Appendix

© Copyright 2012 HKEx 24 / 30

Module Description Network Type Number of connection

Retransmission Module that handle Retransmission in case there is any gap TCP 1

Multicast Handler Module that read data from multicast channels.
- Online message (Line A and Line B)
- Refresh message (Line A and Line B) in case there is any

missing packet that cannot be recovered from RTS

UDP Number of MC x 4

Line Arbitration Module that handle line arbitration. N/A

Message Handler Module that process OMD messages N/A

Note

The above network diagram illustrates one of the possible network connections to OMD. Clients may have different designs when
subscribing to different OMD multicast channels.

HKEx Orion Market Data Platform Appendix

© Copyright 2012 HKEx 25 / 30

APPENDIX B – Pseudo code to connect and receive multicast channel

An example shows how to set up UDP socket and join multicast channel.

int sock_fd;
int flag = 1;
struct sockaddr_in sin;
struct ip_mreq imreq;

// Create a socket
sock_fd = socket(AF_INET, SOCK_DGRAM, 0);

// Set socket option
setsockopt(sock_fd, SOL_SOCKET, SO_REUSEADDR, &flag, sizeof(int));

// Set IP, Port
memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = htons(port);

// Bind
bind(sock_fd, (struct sockaddr *) &sin, sizeof(struct sockaddr))

// Add to Multicast Group
imreq.imr_multiaddr.s_addr = inet_addr(mcAddress);
imreq.imr_interface.s_addr = inet_addr(interface);

setsockopt(sock_fd, IPPROTO_IP, IP_ADD_MEMBERSHIP, (const void *)&imreq, sizeof(struct p_mreq));

An example shows how to read data from a multicast channel.

size_t len;
socklen_t size = sizeof(struct sockaddr);
struct sockaddr_in client_addr;
char mReadBuffer[2046];

memset(mReadBuffer, 0, sizeof(mReadBuffer));

// Read the data on the socket
len = recvfrom(fd, mReadBuffer, sizeof(mReadBuffer), 0, (struct sockaddr *) &client_addr, &size);

HKEx Orion Market Data Platform Appendix

© Copyright 2012 HKEx 26 / 30

APPENDIX C – Pseudo code of Line Arbitration

An example shows how clients process a packet received from OMD. This function handles data
received from Line A or Line B multicast channels.

void processPacket(Packet packetBuffer)
{
 if (packetBuffer.getSeqNum() > expectedSeqNum) {
 //Gap detected, recover lost messages

 //Spool Packet in memory and wait for short period
 //Gap may be filled from next few incoming packet,

//either from same line or alternative line
 spoolMessages(packetBuffer);
 }
 else if (packetBuffer.getSeqNum() + packetBuffer.getMsgCount() < expectedSeqNum) {
 //Duplicate packet, ignore
 }
 else if (packetBuffer.containsSeqNum(expectedSeqNum)) {
 //Process the packet if it contains a message

 //with sequence number = expectedSeqNum
 int msgProcessCount = 0;

 for (int i=0; i < packetBuffer.getMsgCount(); i++) {
 if (packet.getSeqNum() + msgProcessCount == expectedSeqNum) {
 extractMessage(message, packetBuffer, msgProcessCount);
 processMessage(message);

expectedSeqNum++;
 }
 else {

//Duplicate message, ignore
 }

msgProcessCount++;
 }
 }
}

HKEx Orion Market Data Platform Appendix

© Copyright 2012 HKEx 27 / 30

An example shows a timer function processes the spooled messages at a regular time interval.

void checkMessageSpoolTimer()
{
 MessageSpool::iterator i = mMessageSpool.begin();

 // Iterate through the message spool
 while (i != mMessageSpool.end())
 {
 Message message = i->second;

 // If the current packet sequence number is larger than expected,
 // there's a gap

 if (message.getSeqNum() > mNextSeqNum)
 {

//No retrans request sent for this message before
 if (! message.getRetransRequested()) {
 sendRetransRequest(mNextSeqNum,
 message.getSeqNum() - 1);
 return;
 }

 //time limit hasn't been reached, so it's still not an
 // unrecoverable gap. Return and wait..
 if (message.getTimeLimit() < poolTimeLimit) {
 return;
 } else {
 //The RetransRequest failed or took too long and the gap wasn't
 //filled by the other line - The messages have been permanently
 //missed. Recover the lost data from Refresh Server (RFS)
 recoverFromRefresh();
 }
 }
 if (message.containsSeqNum(mNextSeqNum))
 {
 // The packet contains the next expected sequence number, so
 //process it
 processPacket (message);
 }
 }
}

HKEx Orion Market Data Platform Appendix

© Copyright 2012 HKEx 28 / 30

APPENDIX D – Pseudo code for processing retransmission data

An example shows how clients process incoming data from OMD Retransmission server. It handles
Heartbeat, RTS Logon Response, RetransRequest Response and Retrans data.

void read()
{
 readBuffer(mRtsBuffer);

 while (true)
 {
 // Get packet information at mRtsBuffer
 PacketHeader* packet = (PacketHeader*) mRtsBuffer;

 // If the entire packet is in the buffer, process it
 if (isEntirePacket(mRtsBuffer))
 {
 // If Heartbeat (i.e. packet with 0 MsgCount)
 if (packet->mMsgCount == 0)
 {
 sendRtsHeartbeat(mRtsBufPos, packet->mPktSize);
 }
 else
 {
 // Determine the kind of message(s) in the packet
 uint16_t msgType = packet.getMsgType();

 switch (msgType)
 {
 case LOGON_RESPONSE_TYPE:
 {
 LogonResponse *logonResponse
 = (LogonResponse *)(mRtsBufPos + sizeof(PacketHeader));
 processLogonResponse(logonResponse);
 break;
 }
 case RETRANS_RESPONSE_TYPE:
 {
 RetransResponse* resp = (RetransResponse*) (mRtsBufPos + sizeof(PacketHeader));
 processRetransResponse(resp);
 break;
 }
 default:
 processPacket(packet);
 }
 }
 }
 // Wait for the rest of the data to come from the socket
 else
 {
 break;
 }
 }
}

HKEx Orion Market Data Platform Appendix

© Copyright 2012 HKEx 29 / 30

APPENDIX E – Pseudo code for processing Refresh snapshot packet

An example shows how clients process refresh snapshot data from OMD RFS server and merge with
realtime messages

void processRefreshPacket(Packet packetBuffer) {
static int expectedSeqNum = 0;

 //First Message is Heartbeat or Refresh Complete Message
 if(! isStartOfRefresh(packetBuff) {
 return;
 }

 if (packetBuffer.getSeqNum() > expectedSeqNum) {
 //Gap detected
 clearSpoolMessage();
 return;
 }
 else if (packetBuffer.getSeqNum() + packetBuffer.getMsgCount() < expectedSeqNum) {
 //Duplicate packet, ignore
 return;
 }
 else if (packetBuffer.containsSeqNum(expectedSeqNum)) {
 spoolMessages(PacketBuff, expectedSeqNum);
 }

 if (isRefreshComplete(packetBuffer)) {
 List refreshMessageList = getRefreshSpoolMessage();
 processMessages(refreshMessageList);

 //Get spooled realtime message with seq num >= expectedSeqNum;
 List realtimeMessageList = getRealtimeSpoolMessage(expectedSeqNum);
 processMessages(realtimeMessageList);
 }
}

HKEx Orion Market Data Platform Appendix

© Copyright 2012 HKEx 30 / 30

APPENDIX F – Pseudo code for processing Aggregate Order Book Message

An example shows how clients process Aggregate Order Book Message and update the internal order
book.

OrderBook mOrderBook;

void processAggregateOrderBook(AggregateOB aggregateOB) {

switch(aggregateOB.getAction())

case ADD:
 int tickLevel = getTickLevel(mOrderBook, aggregateOB.getPrice());

 insertOB(mOrderBook, tickLevel, aggregateOB);

 //If Price level > 10, delete those order from OBMap
 deleteOBExceedMaxPriceLevel(mOrderBook);

case Update:
 int tickLevel = getTickLevel(mOrderBook, aggregateOB);
 updateOB(mOrderBook, tickLevel, aggregateOB);

case Delete:
int tickLevel = getTickLevel(mOrderBook, aggregateOB);

 deleteOB(mOrderBook, tickLevel, aggregateOB);
 updateOBPriceLeve(mOrderBook)

case Clear:
clearOB(mOrderBook);

}
void insertOB(mOrderBook, tickLevel, newAggregateOB) {

newAggregateOB.setTickLevel(tickLevel);
 mOrderBook.add(tickLevel-1, newAggregateOB);

 for (int i=tickLevel; i < mOrderBook.getSize(); i++) {
 AggregateOB aggregateOB = mOrderBook.get(i);
 aggregateOB.updateTickLevel(mOrderBook);
 aggregateOB.updatePriceLevel(mOrderBook);
 }
}

